
Proofs and Programs

Andrew Clifton

April 17, 2024

We’re interested in “doing” logic on a computer, in the vague sense of using
a program to aid in writing (correct!) proofs of theorems. The goal is to make
writing proofs fun and interesting, like programming is, and not boring and
tedious, as paper proofs often are. Eventually we’ll see that a proof is just a
special kind of program. In fact, there is a kind of “holy trinity” of concepts:

Holy Trinity

Category Theory
Morphisms/Objects

Logic
Proofs/Theorems

Programming
Programs/Types

Given a logic, we can ask what it would look like as a programming lan-
guage; given a programming language, we can askwhat kind of logic it implic-
itly describes. Given a category (more specifically, a topos) we can ask what
logic it describes; given a logic or programming language, we can ask what its
category looks like.

1



1 “Doing” “logic” on a computer

We are interested in “doing” logic on a computer. The first questions we need
to answer are

• What do we mean by doing?

• Which logic do we want to do?

For the first question I’m assuming that we want to use a computer to help
with writing proofs. That is, we have some theorem we want to prove, and we
want to use the computer to aid in that process. If we think of this as writing a
function prove there are two possibilities:

Automated theorem prover

prove(theorem) → proof

Proof checker

prove(theorem, proof) → bool

• If we consider ourselves as writing a function which receives a theorem
as its argument and returns a proof object, then we are in the realm of
automated theorem proving, where we the function constructs the entire
proof, given only the (unproved) theorem. This is the holy grail, but is
not generally possible except for the simplest, most restrictive logics and
theorems.

• If we consider ourselves as writing a function which receives both a the-
orem and a (potential) proof of it, and returns True if the proof is a valid
proof of the theorem, then we are in the realm of proof checking. Any rea-
sonable logic should have a mechanical procedure for checking proofs in
it for validity, hence we only need to implement this procedure in our
function.

A real-world proof assistant usually does both of these things; for small,
simple theorems using a subset of the full logic, the proof assistant may be able
to construct the proof automatically. Hence, one starts with a large, complex
theorem and manually constructs the proof steps; but when the sub-theorems
become small/simple enough, the automated theorem prover takes over and
proves them for you.

In either case, we need to consider proofs as data structure; i.e., what do the
values of proof objects look like? Generally speaking, the forms which proof
objects can take depend on the logical connectives allowed in theorems, so we
first have to consider what kind of logic we want to support.

2



2 First-order intuitionistic propositional logic

I’m assuming we want something fairly standard, what would be called first-
order propositional logic (which we’ll later extend to predicate logic). This means
we have the following elements:

𝐴, 𝐵, 𝐶, … (Primitive propositions)
⊤ (True)
⊥ (False)

𝑃 ∧ 𝑄 (And (conjunction))
𝑃 ∨ 𝑄 (Or (disjunction))

𝑃 → 𝑄 (Implication)

We’ll assume the usual precedence rules: ∧ has higher precedence than ∨,
which has higher precedence than →.

For reasons that will be explained later, we do not consider ¬ (negation) to
be a primitive element of our logic. Instead, we define ¬ in terms of → and ⊥:

¬𝑃 ≡ 𝑃 → ⊥

(I.e., 𝑃 is not true if, from 𝑃, we can derive a contradiction.)

Similarly, we don’t specifically have ↔ (if-and-only-if) as a construct, but
we can easily build it from what we do have:

𝐴 ↔ 𝐵 ≡ (𝐴 → 𝐵) ∧ (𝐵 → 𝐴)

Although we’ll give all of the above the usual definitions, we want to pre-
cisely describe how our logic works; we’ll give this definition in the form of a
collection of inference rules using sequent calculus.

3



An inference rule is written

Rule Name
P1 P2 ⋯ Pn

Q

This rule can be read as

• If all the Pi are true, then Q is
true, or

• To prove thatQ is true, prove that
all the Pi are true

All the Pi and Q will be sequents.

A sequent is written

𝐴, 𝐵, 𝐶, … ⊢ 𝑋, 𝑌, 𝑍, …

A sequent describes a hypothetical
judgment:

• If, hypothetically, all of 𝐴, 𝐵, 𝐶, …
(the antecedants) were true

• Then at least one of the 𝑋, 𝑌, 𝑍, …
(the consequents) would be true.

Note that in a sequent, the ele-
ments of the left-hand-side are joined
implicitly by an “And”, while the
elements of the right-hand-side are
implicitly joined by an “Or”. But
the syntactical elements of a sequent
(comma, ⊢) are just that, syntactical;
they are not operators, you cannot nest
sequents, etc.

We’ll restrict our logic to intuitionistic sequents, where the right-hand side
consists of exactly one element: 𝐴, 𝐵, 𝐶, … ⊢ 𝑄. We’ll call the list on the left-hand-
side the context.

Any sequent calculus normally starts with structural rules, which describe
how the lists on the left/right hand sides of the ⊢ behave. I’ll skip over these
rules, except to mention that 1) the order of the elements in the context doesn’t
matter, 2) duplicates are allowed (and you can freely duplicate any existing
element), and 3) unused elements of the context can be dropped atwill.1 These
basically correspond to our intuition that the context is a list of facts which we
have learned or been given in the course of a proof: the order of facts doesn’t
matter, knowing a fact more than once is the same as knowing it once, and if
you reach the end of a proof knowing “too much” (you have some facts you
didn’t end up using), that’s not a problem.

One vital rule is the assummption rule, which states

Assume
Γ, 𝐴 ⊢ 𝐴

1Removing any of the structure rules yields a sub-structural logic; removing (1) yields a resid-
uated logic, while removing (2) and/or (3) yields various other kinds of sub-structural logic such
as linear logic.

4



(Here, and later, we use Γ to stand in for “everything else in the context”.)
The assumption rule states that if we assume 𝐴 is true, then from this we can
conclude that 𝐴 is true. Generally, a proof will start with the context empty;
later rules will add assumptions to the context, which can then be used by the
assumption rule.

Most rules for our logical structures will come in pairs: a left rule which
describes what we can do with the structure when it is an assumption (what
can we do if we “have” it) and a right rule which describes what we have to do
to prove the given structure (what we have to do to “get” it).

Conjunction: ∧

Let’s consider what the left and right rules should be for ∧ (And):

• If we have an And as an assumption, then we should be able to use both
its conjuncts freely. I.e., assuming that 𝐴 ∧ 𝐵 is true should be the same as
assuming that 𝐴 and 𝐵 are true, separately. So the ∧-Left rule is

∧-Left
Γ, 𝐴, 𝐵 ⊢ 𝑄

Γ, 𝐴 ∧ 𝐵 ⊢ 𝑄

Remember that the left-hand-side of the ⊢ is implicitly an And, so a ∧ on
the left can simply be split up into its parts, making them available.

• If we want to prove an And, it seems reasonable to require that we prove
both halves of it. So the Right rule for ∧ is

∧-Right
Γ ⊢ 𝑃 Γ ⊢ 𝑄

Γ ⊢ 𝑃 ∧ 𝑄

I.e., to show that 𝑃 ∧𝑄 is true, you must (recursively) show that 𝑃 is true,
and also that 𝑄 is true.

Disjunction: ∨

Following the same reasoning,

• If we have an Or, that does not imply that we know which half of the Or is
true; so we have to show that we can prove the conclusion using either
half. For example, if we have (as an assumption), that 𝑥 is either even or
odd, thenwe have to show that the conclusion is true when 𝑥 is even, and
also that it is true when 𝑥 is odd. This leads to the ∨-Left rule:

∨-Left
Γ, 𝐴 ⊢ 𝑄 Γ, 𝐵 ⊢ 𝑄

Γ, 𝐴 ∨ 𝐵 ⊢ 𝑄

5



• If we want an Or, then we can pick whichever half to prove is more con-
venient. So there are actually two ∨-Right rules:

∨-Right1
Γ ⊢ 𝑃

Γ ⊢ 𝑃 ∨ 𝑄
∨-Right2

Γ ⊢ 𝑄

Γ ⊢ 𝑃 ∨ 𝑄

Implication: →

For the Right rule for →, we want to prove that 𝐴 → 𝐵 is true. To do this, we
assume that 𝐴 is true, and then show that a proof of 𝐵 follows:

→-Right
Γ, 𝐴 ⊢ 𝐵

Γ ⊢ 𝐴 → 𝐵

The ⊢ of a sequent is a kind of “syntactical implication”, in the same way that
the commas to the left of the ⊢ are a kind of “syntactical conjunction”. So just as
∧ on the left just expands into its elements, so → just splits its elements between
the left and right.

If we expand out the definition of ¬, we have a ¬-Right “rule”:

¬-Right
Γ, 𝐴 ⊢ ⊥

Γ ⊢ ¬𝐴

I.e., to prove ¬𝐴, we assume 𝐴 and show that a contradiction results. (This is
not a real rule; it is a result of the above rules, rather than an additional rule in
our system.)

The Left rule for → shows how to apply an implication: if we have 𝐴 → 𝐵
and a proof of 𝐴 then we should also be able to conclude 𝐵 (and then use 𝐵 to
conclude whatever we actually want):

→-Left
Γ ⊢ 𝐴 Γ, 𝐵 ⊢ 𝑄

Γ, 𝐴 → 𝐵 ⊢ 𝑄

I.e., to use 𝐴 → 𝐵 on the left, we must show that we can get an 𝐴 from the
context, and then show that adding a 𝐵 (the “output” of the 𝐴 → 𝐵) to the
context allows us to get a 𝑄.2

2For simplicity, I’ve shown the contexts as if the 𝐴 → 𝐵 is removed from them; but remember
that we can freely “copy” elements of the context, so if you still need 𝐴 → 𝐵 as part of proving
Γ ⊢ 𝐴, you can simply copy it before that point.

6



True and False: ⊤ and ⊥

For ⊤ (true) we only have a right
rule: true is true everywhere, in any
context:

⊤-Right
Γ ⊢ ⊤

For ⊥ (false) we only have a left
rule: if we assume false, then any
proposition can be proved (ex falso
quodlibet, from false, anything fol-
lows):

⊥-Left
Γ, ⊥ ⊢ 𝑄

Derivations: forms of proofs

Given the above rules, we can construct some simple proofs, in the form of
derivations. For example, we can prove that 𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴:

→-Right

∧-Left

∧-Right

Assume
𝐴, 𝐵 ⊢ 𝐴

Assume
𝐴, 𝐵 ⊢ 𝐵

𝐴, 𝐵 ⊢ 𝐵 ∧ 𝐴

𝐴 ∧ 𝐵 ⊢ 𝐵 ∧ 𝐴
⊢ 𝐴 ∧ 𝐵 → 𝐵 ∧ 𝐴

We work from the bottom up, starting with the theorem we wish to prove.
The top-level operator of the consequent usually determineswhat rule to apply
next.

Exercises

For all of the following, start with an empty context. (Generally speaking, your
first action will be to apply the →-Right rule, giving you something in the con-
text.)

Exercise 1:

Prove (construct a derivation showing) that

𝐴 ∧ 𝐵 → 𝐴 ∨ 𝐵

Exercise 2:

Prove
𝐴 ∨ 𝐵 → 𝐵 ∨ 𝐴

7



Exercise 3:

Prove
𝐴 ∧ ⊤ ↔ 𝐴

(I.e., ⊤ is the identity for ∧. Remember that 𝑃 ↔ 𝑄 is a shorthand for (𝑃 →
𝑄) ∧ (𝑄 → 𝑃).)

Exercise 4:

Prove
𝐴 ∨ ⊥ ↔ 𝐴

(I.e., ⊥ is the identity for ∨.)

Exercise 5:

Prove
𝐴 ∧ (𝐵 ∨ 𝐶) ↔ (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶)

Exercise 6:

Prove
𝐴 ∨ (𝐵 ∧ 𝐶) ↔ (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶)

The next few exercises require the use of the →-Left rule, which is not officially
part of our system.

Exercise 7:

Prove modus ponens:
(𝐴 ∧ (𝐴 → 𝐵)) → 𝐵

Exercise 8:

Prove the Law of Noncontradiction:

𝐴 ∧ ¬𝐴 → ⊥

Remember that ¬𝐴 is shorthand for 𝐴 → ⊥.

8



Exercise 9:

A common definition of 𝐴 → 𝐵 in truth-tables is

𝐴 → 𝐵 ≡ ¬𝐴 ∨ 𝐵

Is it possible to prove this equivalence (if-and-only-if) in our system?

Exercise 10:

Similarly, in classical logic
¬¬𝐴 → 𝐴

Is this provable in our system?

What about
¬¬¬𝐴 → ¬𝐴

Exercise 11:

Proof-by-contradiction requires the use of the Law of the Excluded Middle,
which states that every proposition is either true or false:

𝐴 ∨ ¬𝐴 → ⊤

Why is this not provable in our system? (In fact, the absence of LEM from our
logic is the major difference between intuitionistic logic and classical logic.)

3 Proof Objects: Values of Type proof

We want to encode the structure of a proof in a value, an object of type proof.
We need to augment our rules to describe not just when something is true,
but what value represents the fact that something is true. We’ll switch to using
propositions of the form

𝑝 ∶ 𝑃

which should be read as “𝑝 (a proof object) is a proof of the proposition 𝑃”. The
form that 𝑝 takes will depend on the form of 𝑃. In a Right-rule, 𝑝 ∶ 𝑃 describes
how to construct a proof object for 𝑃; i.e., Right-rules correspond to constructors.
In a Left-rule for 𝑝 ∶ 𝑃, we describe how to use a proof object for 𝑃; i.e., what
kind of information we can extract from it. Obviously, these two should align
with each other;we should not be able to extractmore information fromaproof
object thanwe put in during its creation, andwhenwe construct a proof object,
we should not add more information to it than it is possible to later extract.

9



In this section, I’ll appeal to an intuition which is quite possibly the central
point of these notes:

When we wish to prove Γ ⊢ 𝑄, think of the proof as a program, whose
arguments/ inputs are given by the elements of Γ, and whose return

type/output is given by 𝑄.

When looking at a given logical construct on the Left, we think of it as an ar-
gument, something we already have and are looking to use. When looking at
a given logical construct on the right, we think of it as the output of a process.
Hence, a proof is an algorithm for transforming the assumptions in Γ into the
output 𝑄.

To drive this point home, side-by-side with the modified inference rules,
we’ll also write (in C++-esque pseudocode) the definition of a function

fun prove(theorem t, proof p, context c) -> bool ;

which takes a theorem (proposition), a proof, and a context as parameters,
and returns True if the given proof is a valid proof of the theorem, assuming
the elements of the context.

Conjunction: ∧

It seems reasonable that a proof a 𝐴 ∧ 𝐵 should include both a proof object for 𝐴
and a proof object for 𝐵. We represent a proof object for 𝐴 ∧ 𝐵 as a pair of proof
objects, (𝑎, 𝑏) where 𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐵. Thus, we have

∧-Right
Γ ⊢ 𝑎 ∶ 𝐴 Γ ⊢ 𝑏 ∶ 𝐵

Γ ⊢ (𝑎, 𝑏) ∶ 𝐴 ∧ 𝐵

fun prove(A ∧ B, (a,b), ctx) -> bool

{

return prove(A, a, ctx) and

prove(B, b, ctx) ;

}

Similarly, if we have (assume) 𝐴 ∧ 𝐵 then we can freely extract out of it the
proof of 𝐴 and/or the proof of 𝐵:

∧-Left
Γ, 𝑎 ∶ 𝐴, 𝑏 ∶ 𝐵 ⊢ 𝑞 ∶ 𝑄

Γ, (𝑎, 𝑏) ∶ 𝐴 ∧ 𝐵 ⊢ 𝑞 ∶ 𝑄

fun prove(Q, q, [(a,b) : A ∧ B, ctx]) -> bool

{

return prove(Q, q, [a:A, b:B, ctx]) ;

}

Aproof object for a conjunction can be thought of as a structwith twomem-
bers: the first a proof of 𝐴 and the second a proof of 𝐵. To return/output such

10



a struct, we have to include values (proofs) for both members (in logic there
is no such thing as “uninitialized”!). If we receive this struct as an argument,
then we can extract and use either, both, or neither of its members.

Disjunction: ∨

For disjunction, our intuition of proof-as-program comes into play. Imagine a
type in a programming language either<A,B> which can contain either a value
of type 𝐴 or a value of type 𝐵 (e.g., either<int,string> can be either an int or a
string).3 Presumably there is some operator iswhich we can use to determine
which of the two types is currently present. This implies that internally, either
must store not just the value of 𝐴 or 𝐵 but also a tag which records which type
is currently being stored.

For us, proof objects for 𝑃 ∨ 𝑄 will take the the form (1, 𝑝) or (2, 𝑞). The first
element is the tag, recording which of the two disjuncts is being proved, while
the second element is the proof object.

The Right rules for ∨ correspond to a function which returns a either<A,B>;
the function has a choice: it can either construct the either for 𝐴 or for 𝐵. So we
have two Right rules:

∨-Right1
Γ ⊢ 𝑝 ∶ 𝑃

Γ ⊢ (1, 𝑝) ∶ 𝑃 ∨ 𝑄

∨-Right2
Γ ⊢ 𝑞 ∶ 𝑄

Γ ⊢ (2, 𝑞) ∶ 𝑃 ∨ 𝑄

fun prove(P ∨ Q, (1,p), ctx) -> bool

{

return prove(P, p, ctx) ;

}

fun prove(P ∨ Q, (2,q), ctx) -> bool

{

return prove(Q, q, ctx) ;

}

3In C++ either is known as variant<…> and it can take any number of types, not just two.

11



On the left hand side, imagine a function which has an argument of type
either<A,B>. Now, the body of the function probably looks something like this:

fun f(either<A,B> e) -> G

{

if(e is A) {

// Extract a:A from e

// .. Something to turn an a:A into a g₁:G

}

else { // e is B

// Extract b:B from e

// .. Something to turn a b:B into a g₂:G

}

}

Thus, to use a ∨ on the Left, we must supply a kind of if/else structure,
showing how we can take either alternative and make them both work. We call
this structure case:

∨𝐿

Γ, 𝑝 ∶ 𝑃 ⊢ 𝑔1 ∶ 𝐺 Γ, 𝑞 ∶ 𝑄 ⊢ 𝑔2 ∶ 𝐺

Γ, 𝑒 ∶ 𝑃 ∨ 𝑄 ⊢ case(𝑒) {
𝑔1 if 𝑒 = (1, 𝑝)
𝑔2 if 𝑒 = (2, 𝑞)

∶ 𝐺

fun prove(G, case(g₁,g₂), [e : P ∨ Q, ctx]) -> bool

{

if(e == (1,p))

return prove(G, g1, [p:P, ctx]) ;

else // e == (2,q)

return prove(G, g2, [q:Q, ctx]) ;

}

This rule says, if we have a 𝑒 ∶ 𝑃 ∨ 𝑄 on the left, then to use it we have to
show that

• If 𝑒 = (1, 𝑝) we can use 𝑝 ∶ 𝑃 to produce a proof 𝑔1 ∶ 𝐺 of our consequent.

• If 𝑒 = (2, 𝑞) w ecan use 𝑞 ∶ 𝑄 to produce a proof 𝑔2 ∶ 𝐺 of our consequent.
Note that 𝑔1 and 𝑔2 may be (most likely are) different, because they were
constructed from different assumptions.

The case construct just bundles up all the relevant elements.

12



It’s worth considering what would happen if proof objects for ∨ were not
“labeled” with which “side” of the ∨ they came from. In dynamically-typed
programming languages such as Python and Javascript, a variable’s type can
change at runtime: a variable might be a string at one moment, an array the
next, and a number after that.However, there is always away to querywhat the
current type of the object is. In Javascript this is typeof, in Python it’s isinstance.
This tells us that, under the hood, these programming language are storing not
just the value but also a “tag”. I.e., the value of a variable containing (say) a
string is not just the bits necessary to represent the string, but also an additional
value indicating “this variable contains a string”. This is the situation we are
in with our “tagged” ∨ proof objects.

If we omit the tags, and allow proofs of 𝑃 ∨ 𝑄 to just be a naked 𝑝 ∶ 𝑃 or
𝑞 ∶ 𝑄 then we are in a situation more like assembly language, where a given
sequence of bits can be a string, or an integer (signed? unsigned? biased?), or
a floating-point value, or part of an array, or an address, and we have no idea
which one it is. Given a proof object 𝑒 ∶ 𝑃 ∨ 𝑄 we cannot extract any information
from it.

This is also why we only allow one consequent on the right side of the ⊢;
to prove Γ ⊢ 𝑃, 𝑄 we only have to show that Γ ⊢ 𝑃 or Γ ⊢ 𝑄 and we are not re-
quired to record which way we did it. Non-intuitionistic sequents correspond
to “untagged” ∨ proof-objects; they discard information about how a ∨ was
proved.

Implication: →

Following our intuition, a proof object for 𝑃 → 𝑄 is a function, which takes as a
parameter 𝑝 ∶ 𝑃 and uses it to construct and return a proof object 𝑞 ∶ 𝑄, which
wewrite as fun(𝑝) = 𝑞; i.e., 𝑞 represents the “body” of the function, whichmay
use the parameter 𝑝.

→𝑅

Γ, 𝑝 ∶ 𝑃 ⊢ 𝑞 ∶ 𝑄

Γ ⊢ (fun(𝑝) = 𝑞) ∶ 𝑃 → 𝑄

fun prove(P → Q, (fun(p) = q) , ctx) -> bool

{

return prove(Q, q, [p:P, ctx]) ;

}

𝑞 corresponds to the “body” of the function, and is allowed to refer to the
“parameter” 𝑝.

If the Right-rule for → tells us how to construct a function, then the Left-rule
tells us how to call a function.

→𝐿

Γ ⊢ 𝑎 ∶ 𝐴
Γ ⊢ (𝑏 = [𝑎/𝑥]𝑒) ∶ 𝐵

Γ, 𝑏 ∶ 𝐵 ⊢ 𝑞 ∶ 𝑄

Γ, (fun(𝑥) = 𝑒) ∶ 𝐴 → 𝐵 ⊢ 𝑞 ∶ 𝑄

13



This rule says that, to use a function 𝑓 ∶ 𝐴 → 𝐵, we need to show that

• We have (can derive from the context Γ) an 𝑎 ∶ 𝐴 to serve as its argument

• “Calling” the function with 𝑎 as its parameter causes it to “return” some
proof object for 𝐵. This works by substituting 𝑎 for 𝑥 within the “body” of
the function 𝑒.

• With 𝑏 ∶ 𝐵 in hand (added to the context), we can derive the actual con-
sequent 𝑞 ∶ 𝑄.

For example,what does the proof object look like for the proposition𝐴∧𝐵 →
𝐵 ∧ 𝐴? The proof of this will be a function which takes an object (𝑎, 𝑏) ∶ 𝐴 ∧ 𝐵
and returns an object (𝑏, 𝑎) ∶ 𝐵 ∧ 𝐴. The definition of this function is

fun((a,b)) = (b,a)

True and False: ⊤ and ⊥

⊤ only has a Right-rule: True is True everywhere, in any context, so we can
create a proof object for True given no information. The proof object for ⊤ is
written () and is called unit. It represents a completely uninteresting object:
no information went into its creation, so no information can ever be extracted
from it.

⊤-Right
Γ ⊢ () ∶ ⊤

fun prove(⊤, (), ctx) -> bool

{

return true ;

}

If () ∶ ⊤ represents a completely uninteresting object, containing no infor-
mation, then the proof-object for ⊥ is the opposite: a magical object which con-
tains all knowledge. This corresponds to the classical principle ex falso quodlibet,
from false, anything follows. If we can get a ⊥ on the left, then any proposition
can be proved from it!

In computational terms, this is somewhat confusing: we have a function
which takes as an argument, a value which cannot exist! But then it can magi-
cally turn that value into any proof object necessary.

⊥-Left
Γ, 𝑒 ∶ ⊥ ⊢ err(𝑒) ∶ 𝑄

fun prove(Q, err(e₁), [e₂ : ⊥, ctx]) -> bool

{

return e₁ == e₂ ;

}

14



err(𝑒) is a “magical” proof object: it can serve as the proof of any proposi-
tion, if only you can manage to construct it!

Figure 2 gives a summary of these rules.

Examples

What is the proof object for 𝐴 ∧ 𝐵 → 𝐴 ∨ 𝐵? There are two distinct proofs,
corresponding to the deriviations:

→-Right

∧-Left

∨-Right1

Assume
𝐴, 𝐵 ⊢ 𝐴

𝐴, 𝐵 ⊢ 𝐴 ∨ 𝐵

𝐴 ∧ 𝐵 ⊢ 𝐴 ∨ 𝐵

(fun((𝑎, 𝑏)) = (1, 𝑎)) ∶ 𝐴 ∧ 𝐵 → 𝐴 ∨ 𝐵

→-Right

∧-Left

∨-Right2

Assume
𝑎 ∶ 𝐴, 𝑏 ∶ 𝐵 ⊢ 𝑏 ∶ 𝐵

𝑎 ∶ 𝐴, 𝑏 ∶ 𝐵 ⊢ (2, 𝑏) ∶ 𝐴 ∨ 𝐵

(𝑎, 𝑏) ∶ 𝐴 ∧ 𝐵 ⊢ (2, 𝑏) ∶ 𝐴 ∨ 𝐵

(fun((𝑎, 𝑏)) = (2, 𝑏)) ∶ 𝐴 ∧ 𝐵 → 𝐴 ∨ 𝐵

Exercises

Exercise 12:

For each (provable) exercise in the first section, construct its corresponding
proof object.

4 From Propositions to Predicates

Currently, the building-blocks of our logic are the bare propositions 𝐴, 𝐵, 𝐶, ….
These represent simple “facts”, true in and of themselves. In order to do any-
thing interesting, we must extend our logic to predicates of the form 𝑃(𝑥), stat-
ing that some property 𝑃 is true of the object 𝑥. That is, we now deal in theorems
about the properties of values. Extending our logic to predicates also requires us
add universal (∀) and existential (∃) quantification rules.

A 𝑛-ary predicate is a proposition of the form

𝑃(𝑡1, 𝑡2, … , 𝑡𝑛)

where the 𝑡𝑖 are the arguments of the predicate. A predicate is a relation which
is true for some assignments of values to its arguments. For example, we can

15



define a predicate nat(𝑥) which is true if-and-only-if 𝑥 is a natural number (i.e.,
an integer ≥ 0):

Nat-0
Γ ⊢ nat(0)

Nat-S
Γ ⊢ nat(𝑥)

Γ ⊢ nat(𝑠(𝑥))

These rules state that 0 is a natural number, and 𝑠(𝑥) is a natural number if-and-
only-if 𝑥 is also a natural number (i.e., this is the classic inductive definition of
ℕ).

Many things that we’d normally think of as operations will be expressed
instead as predicates. For example, to define addition of natural numbers, we
will define a predicate corresponding to the equation 𝑎 + 𝑏 = 𝑐, written as
add(𝑎, 𝑏, 𝑐):

Add-0
Γ ⊢ add(0, 𝑥, 𝑥)

(Base case: 0 + 𝑥 = 𝑥)

Add-S
Γ ⊢ add(𝑥, 𝑦, 𝑧)

Γ ⊢ add(𝑠(𝑥), 𝑦, 𝑠(𝑧))
(Recursive case: (1 + 𝑥) + 𝑦 = (1 + 𝑧) if 𝑥 + 𝑦 = 𝑧)

Using this definition, here’s a derivation showing that 2 + 3 = 5:

Add-S

Add-S

Add-Z
add(0, 𝑠(𝑠(𝑠(0))), 𝑠(𝑠(𝑠(0))))

add(𝑠(0), 𝑠(𝑠(𝑠(0))), 𝑠(𝑠(𝑠(𝑠(0)))))

add(𝑠(𝑠(0)), 𝑠(𝑠(𝑠(0))), 𝑠(𝑠(𝑠(𝑠(𝑠(0))))))

In the future, we’ll write natural numbers in their normal decimal form,
with the understanding that 1 ≡ 𝑠(0), 2 ≡ 𝑠(𝑠(0)), … Using this more readable
form, here’s the above derivation:

Add-S

Add-S

Add-Z
add(0, 3, 3)

add(1, 2, 4)

add(2, 3, 5)

I.e., 2 + 3 = 5 because 1 + 3 = 4 because 0 + 3 = 3 (base case).

I’ve gone to the trouble of defining natural numbers not just for fun, but
also because we need something for predicates to be about.

Universal and Existential Quantification

coming soon...

16



5 Appendix A: Summary of inference rules

Assume
𝑃1, … , 𝑃𝑛 ⊢ 𝑃𝑖

⊤𝑅
Γ ⊢ ⊤

⊥𝐿
Γ, ⊥ ⊢ 𝑄

∧𝑅

Γ ⊢ 𝑃 Γ ⊢ 𝑄

Γ ⊢ 𝑃 ∧ 𝑄
∧𝐿

Γ, 𝑃, 𝑄 ⊢ 𝐺

Γ, 𝑃 ∧ 𝑄 ⊢ 𝐺

∨𝑅1

Γ ⊢ 𝑃
Γ ⊢ 𝑃 ∨ 𝑄

∨𝑅2

Γ ⊢ 𝑄

Γ ⊢ 𝑃 ∨ 𝑄

∨𝐿

Γ, 𝑃 ⊢ 𝐺 Γ, 𝑄 ⊢ 𝐺

Γ, 𝑃 ∨ 𝑄 ⊢ 𝐺

→𝑅

Γ, 𝑃 ⊢ 𝑄

Γ ⊢ 𝑃 → 𝑄
→𝐿

Γ, 𝐴 → 𝐵 ⊢ 𝐴 Γ, 𝐴 → 𝐵, 𝐵 ⊢ 𝑄

Γ, 𝐴 → 𝐵 ⊢ 𝑄

Figure 1: Rules without proof objects

17



Assume
𝑝1 ∶ 𝑃1, … , 𝑝𝑛 ∶ 𝑃𝑛 ⊢ 𝑝𝑖 ∶ 𝑃𝑖

⊤𝑅
Γ ⊢ () ∶ ⊤

⊥𝐿
Γ, 𝑒 ∶ ⊥ ⊢ err(𝑒) ∶ 𝑃

∧𝑅

Γ ⊢ 𝑝 ∶ 𝑃 Γ ⊢ 𝑞 ∶ 𝑄

Γ ⊢ (𝑝, 𝑞) ∶ 𝑃 ∧ 𝑄
∧𝐿

Γ, 𝑝 ∶ 𝑃, 𝑞 ∶ 𝑄 ⊢ 𝐺

Γ, (𝑝, 𝑞) ∶ 𝑃 ∧ 𝑄 ⊢ 𝐺

∨𝑅1

Γ ⊢ 𝑝 ∶ 𝑃

Γ ⊢ (1, 𝑝) ∶ 𝑃 ∨ 𝑄
∨𝑅2

Γ ⊢ 𝑞 ∶ 𝑄

Γ ⊢ (2, 𝑞) ∶ 𝑃 ∨ 𝑄

∨𝐿

Γ, 𝑝 ∶ 𝑃 ⊢ 𝑔1 ∶ 𝐺 Γ, 𝑞 ∶ 𝑄 ⊢ 𝑔2 ∶ 𝐺

Γ, 𝑒 ∶ 𝑃 ∨ 𝑄 ⊢ case(𝑒) = {
𝑔1 if 𝑒 = (1, 𝑝)
𝑔2 if 𝑒 = (2, 𝑞)

∶ 𝐺

→𝑅

Γ, 𝑝 ∶ 𝑃 ⊢ 𝑒 ∶ 𝑄

Γ, ⊢ (fun(𝑝) = 𝑒) ∶ 𝑃 → 𝑄

→𝐿

Γ ⊢ 𝑎 ∶ 𝐴
Γ, [𝑎/𝑥]𝑒 ∶ 𝐵 ⊢ 𝑞 ∶ 𝑄

Γ, (fun(𝑥) = 𝑒) ∶ 𝐴 → 𝐵 ⊢ 𝑞 ∶ 𝑄

Figure 2: Rules with proof objects

18



6 Appendix B: About this Document

This document was typeset in LATEX, using the memoir document class.

Body text is set in TEX Gyre Pagella, an open-source version of Palatino
Linotype.

Sans text is set in Andika New Basic.

Math is set in GFS Neohellenic.

Computer type is set in Iosevka.

The following packages were used (this list is not exhaustive):

• booktabs, for nicer-looking tables

• exercises, for (automatically numbered) exercises

• multicol, for multi-column layouts

• semantic, for inference rules.

• TikZ, for diagrams

19

https://ctan.org/pkg/memoir
https://ctan.org/pkg/tex-gyre-pagella
https://software.sil.org/andika/
https://ctan.org/pkg/gfsneohellenic
https://github.com/be5invis/Iosevka
https://ctan.org/pkg/booktabs
https://ctan.org/pkg/exercises
https://ctan.org/pkg/multicol
https://ctan.org/pkg/semantic
https://ctan.org/pkg/pgf

	``Doing'' ``logic'' on a computer
	First-order intuitionistic propositional logic
	Proof Objects: Values of Type proof
	From Propositions to Predicates
	Appendix A: Summary of inference rules
	Appendix B: About this Document

