
An introduction to Type Theory and Formal Semantics
Andrew Clifton
November 9, 2017

Type theory is a deductive system for reasoning about the properties of pro-
grams written in programming languages. Although the most familiar mean-
ing of “type” is “type of value” (e.g., integer, string, etc.) type theory actually
encompasses all static properties of programs: the type may include any infor-
mation that can be reliably extracted from programs without running them.
Obviously, the kinds of information available depend heavily on the language
in which programs are written, hence the natural connection between type
theory and programming language semantics. Type theory also offers an
alternate foundation from which mathematical structures can be specified, by
viewing types as propositions, and values as proofs of those propositions.

Background

Type theory originated in the design of strongly-typed programming lan-
guages. In a strongly-typed language, every value, and hence every expres-
sion, has a fixed type: for example, Int(eger) or Str(ing, a textual sequence
of characters). The constraints on an operation can be described in terms
of the types of its input(s), and the type of its output. For example, + takes
two Int inputs and gives an Int output. Formally, we would write this type as
something like

Int × Int → Int

Some operations “mix up” types, as in the length operation which gives
the length of a string, which has type Str → Int. We can also imagine a print
operation which takes an Int and gives the string consisting of its textual
representation. (E.g., print(1) would evaluate to the string "1".) This would
have type Int → Str.

A program consists of some arrangement of operations, which must
be syntactically correct (matched parentheses and so forth), but not all
syntactically-correct arrangements make sense with respect to the types. In
order for a program to make sense — to be “well-typed” — input types must
align with output types. For example, the program

print(1 + 2)

is well-typed, because 1 and 2 are both Ints which is what + expects as
inputs, and the result of + is an Int, which is expected by print. Conversely,
this program

length(1 + "a")

is ill-typed, because + must have two Int inputs, but its right input is a Str.
(Note that length has no say in the matter; once a type error has occurred,
we don’t bother looking anywhere else.)



an introduction to type theory and formal semantics 2

We want to describe the types of the operations in this (fictional) lan-
guage in such a way that we can answer the question: What is the type, if
any, of a given program? (If we cannot determine the type of a program, we
say that it is ill-typed.)

Inference rules

We’re going to write typing rules as inference rules, so here’s a quick intro-
duction. An inference rule is written as a set of premises above a conclusion:

𝑃 𝑄 𝑅
𝐶

This rule has three premises, 𝑃, 𝑄, and 𝑅, and a conclusion 𝐶. Expressed
informally, the rule says “if 𝑃, 𝑄, and 𝑅 are true, then 𝐶 is true.” Another
way to think of it is as saying, “to prove the truth of 𝐶, you must prove 𝑃,
𝑄, and 𝑅”. (On the other hand, if we already know that 𝐶 is true, then 𝑃, 𝑄,
and 𝑅 should be true, also.)

Every inference rule must have a conclusion, but a rule may have zero
premises:

𝐶

This rule is an axiom stating that 𝐶 is always true.
Often we’ll label our rules with names, so we can refer to them later:

Ex􏷪
𝑃 𝑄 𝑅

𝐶

As an example, suppose we have the following rules:

It is raining
I’ll have an umbrella It is raining

What conclusions can we draw from these rules? (That it is raining,
and that I’m carrying an umbrella.) Given a system of rules, we can do two
things:

• We can start with the axioms and work our way down, seeing how many
conclusions we can prove from them. Often this set will be infinite, so
this technique is of limited use.

• Given some judgment whose truth is unknown (i.e., a proposition), we
can work upwards, from conclusions to premises, trying to tie off every
line of reasoning with an axiom. A complete “tree” of rule applications,
from proposition to axioms, is called a derivation. Note that while the
existence of a derivation implies the truth of the starting judgment, the
lack of a derivation is not proof of its negation. For example, if it is not



an introduction to type theory and formal semantics 3

raining, we cannot conclude that I will not have an umbrella; there might
be other, unstated, reasons why I would have an umbrella.

Example 1 Here is a system of rules about the primitive judgments 𝑃, 𝑄, and
𝑅:

RuleA
𝑃

RuleB
𝑃
𝑄

RuleC
𝑃 𝑄

𝑅

Using these, we can construct a proof of 𝑅:

RuleC

RuleA
𝑃

RuleB

RuleA
𝑃

𝑄
𝑅

If we have two rules with the same conclusion, then, when trying to
prove it, we have two choices as to how to proceed:

𝑃
𝑅

𝑄
𝑅

To prove 𝑅 we can either try to prove 𝑃, or we can try to prove 𝑄.

Example 2 Natural numbers can be defined by the two rules

• Zero is a natural number

• If 𝑥 is a natural number, then 1 + 𝑥 is also a natural number.

As inference rules, this defines a judgment nat:

NatZero
0 nat

NatSucc
𝑥 nat

1 + 𝑥 nat

Given this definition, we can prove that 3 (= 1 + 1 + 1 + 0) nat, by
constructing a derivation:

3 (= 1+1+1+0) nat ⟶ NatSucc

NatSucc
NatSucc

NatZero
0 nat

1 + 0 nat

1 + (1 + 0) nat
1 + (1 + (1 + 0)) nat

Note that we are not constructing the set of natural numbers, ℕ. Doing
so would require the third property of an inductive set, closure, the state-
ment that “nothing else is a natural number”. What I’ve built here is an
(intuitionistic) judgment defining “natural number-ness”. If we try to prove
something like

1 + potato nat ⟶ NatSucc

?
potato nat

1 + potato nat



an introduction to type theory and formal semantics 4

the answer we get is not a definitive false, but rather “unable to be proven”.
Put another way, the judgment nat describes when something is a nat-

ural number; the question of when something is not a natural number is
a completely different question, and would require a completely different
judgment.

Hypothetical judgments

Later on we will need the ability to use hypothetical judgments in our infer-
ence rules. A hypothetical judgment is one in which we temporarily assume
something to be true, but only in some particular branch of a derivation.
We write a hypothetical judgment as

This is an intuitionistic (one consequent)
presentation of hypothetical judgments,
using sequents, otherwise known as
Gentzen’s System LJ. The other option is to
use natural deduction, which is a bit more
cumbersome for our purposes.

… ⊢ 𝐶

To the left of the ⊢ is the list of assumptions, and 𝐶 is the consequent of the
judgment. (In fact, when we write a non-hypothetical judgment 𝐶 we are
implicitly stating ⊢ 𝐶; that is, 𝐶 is true with no assumptions.)

We usually assume that hypothetical judgments are governed by the
following rules (structural):

Assumption
… , 𝐶, … ⊢ 𝐶

Exchange
… , 𝐵, 𝐴, … ⊢ 𝐶
… ,𝐴, 𝐵, … ⊢ 𝐶

Weakening
… ,𝐴, 𝐴, … ⊢ 𝐶
… ,𝐴, … ⊢ 𝐶

These basically work together to make the set of assumptions act like
a proper set: order of assumptions doesn’t matter (rule Exchange) and
duplicates are ignored (rule Weakening). The Assumption rule is
what lets us actually use an assumption: if we assume that C is true, then C
is axiomatically true in that context.

Judgments

Judgments are the things that 𝐴, 𝐵, etc. stand for above. A judgment is
something that can be true, or potentially proven to be true. The most
important judgments in our type theory will be

Judgment Meaning

𝑒 prog 𝑒 is a syntactically-valid program
𝑡 typ 𝑡 is a syntactically-valid type
𝑥 ∶ 𝜏 Expression 𝑥 is of type 𝜏
𝑥 ↦ 𝑥′ Expression 𝑥 takes a single evaluation step to 𝑥′

𝑣 val 𝑣 is a fully-evaluated value

The first three relate to the statics (type semantics) of a language, while
the last two relate to its dynamics (runtime behavior).



an introduction to type theory and formal semantics 5

A specification for Int-Str

Here we will use inference rules to present a typing specification of the
language Int-Str, a simple language with two types (Int and Str) and a few
operations. We assume that the language has the following syntactical
elements:

• Integer constants 0, 1, 2, etc. We will embed these into the language as
𝑛[0], 𝑛[1], ….

• String constants, embedded as 𝑠["…"]

• The infix binary + operator on integers

• The one-argument (unary) function length, taking a string input and
returning an integer.

• The one-argument print function, taking an integer input and returning a
string.

In the style of nat above, we can give a similarly inductive definition of
the collection of syntactically valid programs in Int-Str:

ProgInt
𝑛[𝑥] prog

ProgStr
𝑠[𝑥] prog

Prog+
𝑒􏷠 prog 𝑒􏷡 prog

𝑒􏷠 + 𝑒􏷡 prog
ProgLength

𝑒 prog

length(𝑒) prog
ProgPrint

𝑒 prog

print(𝑒) prog

Note that prog says nothing about whether a program is well-typed; it
only describes those programs which are syntactically valid. According to
the above rules,

𝑛[1] + 𝑠["a"] prog

is a syntactically-valid program; it is, however, not a well-typed one.

Statics: Types of Valid Programs

The language Int-Str only has two types, Int and Str, for simplicity. In a more
complex system we might want to defined a judgment typ to define the
structure of syntactically valid types, but that’s not necessary yet (we will
define typ when we add compound types).

Recall that to say that 𝑥 is of type 𝜏 we write the judgment 𝑥 ∶ 𝜏.
The types of the constants are given by the rules

TypeInt
𝑛[𝑥] ∶ Int

TypeStr
𝑠[𝑥] ∶ Str

These rules are axiomatic, specifying that any integer literal, and any string
literal, is a well-typed program.



an introduction to type theory and formal semantics 6

The remainder of the typing rules are not axiomatic: they depend on the
types of their subexpressions being correct.

Type+
𝑥 ∶ Int 𝑦 ∶ Int

𝑥 + 𝑦 ∶ Int TypeLength
𝑠 ∶ Str

length(𝑠) ∶ Int
TypePrint

𝑥 ∶ Int
print(𝑥) ∶ Str

Using these rules, we can determine the type of a (valid) program, while
simultaneously showing that the program is well-typed:

TypePrint

Type+

TypeLength

TypeStr
𝑠["a"] ∶ Str

length(𝑠["a"]) ∶ Int
TypeInt

𝑛[1] ∶ Int
length(𝑠["a"]) + 𝑛[1] ∶ Int

print(length(𝑠["a"]) + 𝑛[1]) ∶ Str

On the other hand, we’ll get stuck if we try this with an ill-typed pro-
gram:

print(print(𝑛[1]) + 𝑠["a"]) ∶ ?

Dynamics: Evaluation of Programs

While the “statics” of a type system describe the types of a program, the
closely-related dynamic specification describes the evaluation (runtime
behavior) of a program. This is defined using the ↦ judgment to describe
how a program “takes a step”, and the val judgment to describe when a
program cannot take another step (has completed). Each step is a single
transformation of the program, progressing towards the final val.

For Int-Str, the literal values are val; they are fully evaluated and cannot
take a step:

ValInt
𝑛[𝑥] val

ValStr
𝑠[𝑥] val

A program consisting of only an integer constant, or only a string literal,
is finished.

The operations +, length and print must be defined somehow; presum-
ably there are machine code instructions (or system subroutines) which,
when executed, will perform addition, compute the length of a string, or
convert an integer to its string representation. We’ll represent these inter-
nal operations as the primitive operations ADD, LEN, and PRN. For example, the
rules will specify that 𝑛[1] + 𝑛[2] ↦ 𝑛[ADD(1, 2)], indicating that we construct
a new numeric constant from the actual sum of 1 and 2.

Let us consider the behavior of a program such as (𝑛[1] + 𝑛[2]) + (𝑛[2] +
𝑛[3]). Looking at the outer +, we cannot execute the ADD operation yet,
because the arguments are not yet fully evaluated. Hence, we need several
evaluation rules, to describe the order of operations. I will assume that the
operands are evaluated left-to-right. This leads to the following evaluation



an introduction to type theory and formal semantics 7

rules:

Search+􏷪

𝑒􏷠 ↦ 𝑒′􏷠
𝑒􏷠 + 𝑒􏷡 ↦ 𝑒′􏷠 + 𝑒􏷡

Search+􏷫

𝑒􏷠 val 𝑒􏷡 ↦ 𝑒′􏷡
𝑒􏷠 + 𝑒􏷡 ↦ 𝑒􏷠 + 𝑒′􏷡

Plus
𝑛[𝑥􏷠] + 𝑛[𝑥􏷡] ↦ 𝑛[ADD(𝑥􏷠, 𝑥􏷡)]

If the left operand (𝑒􏷠 above) can take a step, then it does so, replacing
the original operand with the stepped-to value. If the left operand is val,
then we perform the same procedure on the right operand. When both
operands are integer constants (𝑛[𝑥] for some 𝑥) then we actually perform
the addition. Note that the Plus rule takes effect not just when both
arguments are val, but specifically when they are both numeric. If we had
specified the rule as

Plus
𝑒􏷠 val 𝑒􏷡 val

𝑒􏷠 + 𝑒􏷡 ↦ ?

then we wouldn’t have been able to extract the 𝑥􏷠, 𝑥􏷡 needed to perform the
ADD.

Search+􏷠 and Search+􏷡 are sometimes called search rules, because
they direct the “search” for the part of the program that can actually be
executed next.

We follow a similar procedure, but simplified, for length and print: evalu-
ate the input until it is val, and then apply the primitive operation to it.

SearchLen
𝑒 ↦ 𝑒′

length(𝑒) ↦ length(𝑒′)
Len

length(𝑠[𝑥]) ↦ 𝑛[LEN(𝑥)]

SearchPrint
𝑒 ↦ 𝑒′

print(𝑒) ↦ print(𝑒′)
Print

print(𝑛[𝑥]) ↦ 𝑠[PRN(𝑥)]

Notice that none of these rules make any reference to the types Int and
Str. This is known as type erasure: presumably we only run programs that
are well-typed, so the actual typing information is not needed at runtime.

Using these rules, we can “run” a program such as

length(print(𝑛[1] + 𝑛[2])) + 𝑛[3]

The result has a two-dimensional structure: applying the search rules
constructs a derivation, whose purpose is to find the innermost portion of
the program that can be executed. This results in a new program, on which
we perform a new search, and so forth until the result is val.

Type Safety

Given a static and dynamic specification for a programming language, we
would like to show that the resulting language is safe; i.e., that no well-
typed program “goes wrong”, but always finishes with a value (val) of the



an introduction to type theory and formal semantics 8

program’s type. This is called type safety and consists of two propositions:

• Progress: For all 𝑒 ∶ 𝜏, either 𝑒 ↦ 𝑒′ or 𝑒 val is true. (Every well-typed
program either takes a step or is finished.)

• Preservation: For all 𝑒 ∶ 𝜏, if 𝑒 ↦ 𝑒′ then 𝑒′ ∶ 𝜏. (If a well-typed
program takes a step, then its type is the same before and after.)

Note that these are properties of whole programming languages, not
individual programs. Once we have proven that a language is type-safe,
then any particular program in that language obviously will be.



an introduction to type theory and formal semantics 9

Proof of Progress: Progress is proved by induction on typing judgment
𝑒 ∶ 𝜏. The proof will have one case for each form of the typing judgment
(i.e., for each typing rule above). The proof depends on a fairly simple pair
of lemmas, known as the canonical forms lemmas:

Lemma 1 If 𝑒 ∶ Int and 𝑒 val then there exists 𝑥 such that 𝑒 = 𝑛[𝑥].

Lemma 2 If 𝑒 ∶ Str and 𝑒 val then there exists 𝑥 such that 𝑒 = 𝑠[𝑥].

These essentially state that the vals of each type are closed. Thus, if we have
𝑒 val and we know 𝑒’s type, we can safely dismantle it to get at the 𝑥 (either
integer or string) inside.

Proof For all 𝑒 ∶ 𝜏 either 𝑒 val or there exists 𝑒′ with 𝑒 ↦ 𝑒′.
By induction on 𝑒 ∶ 𝜏.

Inductive hypothesis: For any subexpression 𝑥 of 𝑒, 𝑥 ∶ 𝜏 implies either
𝑥 val or there exists 𝑥′, 𝑥 ↦ 𝑥′.

• Case 1 and 2: 𝑒 = 𝑛[𝑥] ∶ Int and 𝑒 = 𝑠[𝑥] ∶ Str. The constants are easy;
constants are val and hence cannot take a step, and thus 𝑒 val.

• Case 3: 𝑒 = 𝑒􏷠 + 𝑒􏷡 ∶ Int. Our assumptions are 𝑒􏷠 ∶ Int, 𝑒􏷡 ∶ Int (from the rule
Type+). By the IH, we can assert that both 𝑒􏷠 and 𝑒􏷡 are either val or take
steps. There are subcases for each of the possibilities:

1. If 𝑒􏷠 ↦ 𝑒′􏷠 then 𝑒􏷠 + 𝑒􏷡 ↦ 𝑒′􏷠 + 𝑒􏷡 by rule Search+􏷠. (Note that we
don’t care about 𝑒􏷡 in this case.)

2. If 𝑒􏷠 val and 𝑒􏷡 ↦ 𝑒′􏷡 then 𝑒􏷠 + 𝑒􏷡 ↦ 𝑒􏷠 + 𝑒′􏷡 by rule Search+􏷡

3. If 𝑒􏷠 val and 𝑒􏷡 val then by the canonical forms lemmas there are 𝑥􏷠, 𝑥􏷡
such that 𝑒􏷠 = 𝑛[𝑥􏷠], 𝑒􏷡 = 𝑛[𝑥􏷡], and thus 𝑛[𝑥􏷠] + 𝑛[𝑥􏷡] ↦ 𝑛[ADD(𝑥􏷠, 𝑥􏷡)]
by rule Plus

• Cases 4 and 5, for length and print are very similar: we gain an assump-
tion about the type of the argument, and by the IH, the argument (a
subexpression) must be either val (and hence the canonical forms lem-
mas apply) or take a step to some other expression. In either case, the
evaluation rules give a step for the whole expression 𝑒. ⊣

Proof of Preservation: Preservation is proved by induction on the step
relation 𝑒 ↦ 𝑒′. There are cases for each step rule.

Inductive hypothesis: for any subexpression 𝑥 of 𝑒, if 𝑥 ∶ 𝜏′ and 𝑥 → 𝑥′

then 𝑥′ ∶ 𝜏′.

• There are no cases for constants, because they cannot take a step.

• If 𝑒 = 𝑒􏷠 + 𝑒􏷡 then by inversion of 𝑒􏷠 + 𝑒􏷡 ∶ Int, we know 𝑒􏷠, 𝑒􏷡 ∶ Int. There
are three subcases one for each + rule:



an introduction to type theory and formal semantics 10

– If 𝑒􏷠 ↦ 𝑒′􏷠 then by the IH, 𝑒′􏷠 ∶ Int. So then we have 𝑒′ = 𝑒′􏷠 + 𝑒􏷡 where
both are of type Int, and by rule Type+, 𝑒′ ∶ nat.

– If 𝑒􏷠 val, then 𝑒􏷡 ↦ 𝑒′􏷡, and by the IH we have 𝑒′􏷡 ∶ Int, and 𝑒′ = 𝑒􏷠 + 𝑒′􏷡.
So again, by rule Type+ we have 𝑒′ ∶ Int.

– If 𝑒􏷠 = 𝑛[𝑥􏷠], 𝑒􏷡 = 𝑛[𝑥􏷡] then 𝑒′ = 𝑛[ADD(𝑥􏷠, 𝑥􏷡)] and by rule TypeInt,
𝑒′ ∶ Int.

• If 𝑒 = length(𝑒􏷠) then by inversion of length(𝑒􏷠) ∶ Int, we know 𝑒􏷠 ∶ Str.
Once again, there are two cases, for the two length evaluation rules:

– If 𝑒􏷠 → 𝑒′􏷠 then by IH, 𝑒′􏷠 ∶ Str, so length(𝑒′􏷠) ∶ Int by rule TypeLength.

– If 𝑒􏷠 = 𝑠[𝑥] for some 𝑥, then 𝑒′ = 𝑛[LEN(𝑥)] and by rule TypeInt, 𝑒′ ∶ Int.

• The case for print is similar; either the inner expression takes a step (and
then by IH it’s type is preserved), or the primitive operation is used.

Some other interesting properties of Int-Str are

• Determinism of ↦: Prove that every non-val program 𝑒 ∶ 𝜏 takes a
step to a unique program 𝑒′. The easiest way to state this property is

if 𝑒 ↦ 𝑒􏷠 and 𝑒 ↦ 𝑒􏷡 then 𝑒􏷠 = 𝑒􏷡

• Termination: Prove that every well-typed program 𝑒, if stepped
enough times, will eventually terminate (become val). If we define the
iteration of ↦, ↦∗

𝑒 val

𝑒 ↦∗ 𝑒
𝑒 ↦ 𝑒′ 𝑒′ ↦∗ 𝑒″

𝑒 ↦∗ 𝑒″

this amounts to proving that for every 𝑒 ∶ 𝜏, there is some 𝑒′ such that
𝑒 ↦∗ 𝑒′ and 𝑒′ val.

Proof of these is left as an exercise for the reader.

Variable bindings

Variables, which can be bound to values, are a common feature of pro-
gramming languages and will serve as a stepping-stone to fully-fledged
functions. To add variable bindings to Int-Str we will add a new operation:
let. The syntax of let is

let 𝑣 = 𝑒 in 𝑒′

and has the effect of binding the variable 𝑣 to the value 𝑒, within the subex-
pression 𝑒′. For example:

let 𝑣 = 𝑛[1] in 𝑣 + 𝑣



an introduction to type theory and formal semantics 11

would evaluate to 2. Outside of the in part, the variable 𝑣 does not exist, and
its use is not valid. (Note that the entire let…in…is a single operation.)

The syntactical and typing rules for let are somewhat subtle, as they
require the use of hypothetical judgments. We will consider the syntax rule
prog first: when is a let-expression syntactically valid? It may be helpful to
examine some non-syntactically valid let-programs:

• let 𝑣 = 𝑛[1] + in 𝑣 + 𝑣
Here, the program is invalid because the expression assigned to 𝑣 is
invalid.

• let 𝑣 = 𝑛[1] in 𝑣 +
Here, the program is invalid because the main expression is invalid.

• 𝑣 + 𝑛[1]
Here the program is invalid because a variable 𝑣 is used outside the main
expression of a corresponding let.

Obviously the expression assigned to the variable (𝑒 in 𝑣 = 𝑒) must be
valid on its own. Thus, one of our conditions is 𝑒 prog. And outside of a
let, 𝑣 is not valid, but it is valid within 𝑒′. We express this by requiring that
𝑒′ prog assuming that 𝑣 prog. 𝑣 is not a valid program universally, but only
as part of “check” on the validity of 𝑒′.

We can express these conditions using hypothetical judgments:

ProgLet
𝑒 prog 𝑣 prog ⊢ 𝑒′ prog

let 𝑣 = 𝑒 in 𝑒′ prog
where 𝑣 is fresh

The extra condition on the end serves to avoid difficulties that arise
when we have lets inside other lets. We require that each let use a “fresh”
variable, so there is no possibility of collision with variable names. It is
always possible to rename variables so that no name is reused. Note that 𝑣
is only assumed to exist within 𝑒′, and not within 𝑒; this rules out “infinite”
bindings such as

let 𝑣 = 𝑣 in 𝑛[1] + 𝑣

Using this definition, we can prove that a simple let-expression is
syntactically-valid:

ProgLet

ProgInt
𝑛[1] prog Assumption 𝑣 prog ⊢ 𝑣 prog

let 𝑣 = 𝑛[1] in 𝑣 prog

However, if we try to prove this of some more complex let, we’ll get



an introduction to type theory and formal semantics 12

stuck:

ProgLet

ProgInt
𝑛[1] prog

?
𝑣 prog ⊢ 𝑣 + 𝑣 prog

let 𝑣 = 𝑛[1] in 𝑣 + 𝑣 prog

The problem is that none of the other prog rules allow for assumptions.
E.g., the Prog+ rule

Prog+
𝑒􏷠 prog 𝑒􏷡 prog

𝑒􏷠 + 𝑒􏷡 prog

can only be applied when there are no assumptions (𝑒􏷠 + 𝑒􏷡 prog implicitly
means ⊢ 𝑒􏷠 + 𝑒􏷡 prog). In order to allow the rest of the system to work with
let, we need to thread the current context of assumptions through all the
rules. We will use Γ to represent all the assumptions in the context. This
leads to the following re-definition of prog:

ProgInt
Γ ⊢ 𝑛[𝑥] prog

ProgStr
Γ ⊢ 𝑠[𝑥] prog

Prog+
Γ ⊢ 𝑒􏷠 prog Γ ⊢ 𝑒􏷡 prog

Γ ⊢ 𝑒􏷠 + 𝑒􏷡 prog

ProgLength
Γ ⊢ 𝑒 prog

Γ ⊢ length(𝑒) prog
ProgPrint

Γ ⊢ 𝑒 prog

Γ ⊢ print(𝑒) prog

ProgLet
Γ ⊢ 𝑒 prog Γ, 𝑣 prog ⊢ 𝑒′ prog

Γ ⊢ let 𝑣 = 𝑒 in 𝑒′ prog

(Notice that ProgLet is the only rule which modifies the context,
adding an assumption about the validity of its variable.)

Now if we try to prove the validity of

ProgLet

ProgInt
⊢ 𝑛[1] prog Prog+

Assumption 𝑣 prog ⊢ 𝑣 prog
Assumption 𝑣 prog ⊢ 𝑣 prog

𝑣 prog ⊢ 𝑣 + 𝑣 prog

⊢ let 𝑣 = 𝑛[1] in 𝑣 + 𝑣 prog

we’ll be successful; the context will be carried into the subexpressions of
+ where it can be used.

Statics of Let-Int-Str

Adding let to the static specification requires a similar effort: what is the
type of let 𝑣 = 𝑒 in 𝑒′? Clearly, it depends on the type of 𝑒: the type of 𝑒′

is what results when 𝑒’s type is “injected” into it, at every point where 𝑣 is



an introduction to type theory and formal semantics 13

used. Once again, we will use hypothetical judgments to assume that 𝑣’s
type is the same as 𝑒’s, while we are typing 𝑒′:

TypeLet
Γ ⊢ 𝑒 ∶ 𝜏 Γ, 𝑣 ∶ 𝜏 ⊢ 𝑒′ ∶ 𝜏′

Γ ⊢ let 𝑣 = 𝑒 in 𝑒′ ∶ 𝜏′

Just as with prog, we need to integrate Γ into the other typing rules:

TypeInt
Γ ⊢ 𝑛[𝑥] ∶ Int

TypeStr
Γ ⊢ 𝑠[𝑥] ∶ Str

Type+
Γ ⊢ 𝑥 ∶ Int Γ ⊢ 𝑦 ∶ Int

Γ ⊢ 𝑥 + 𝑦 ∶ Int
TypeLength

Γ ⊢ 𝑠 ∶ Str
Γ ⊢ length(𝑠) ∶ Int

TypePrint
Γ ⊢ 𝑥 ∶ Int

Γ ⊢ print(𝑥) ∶ Str

Note that under these rules a let expression is only well-typed if its
bound expression (𝑒) is well typed. This is true, even if the bound expression
is never used! For example,

let 𝑣 = 𝑛[1] + 𝑠["a"] in 𝑛[2]

is not well-typed, even though we know exactly the type it will always
have: Int. This restriction is necessary because we need to know the type of
𝑒 ∶ 𝜏 for the assumption 𝑣 ∶ 𝜏.

Dynamics of let

When a let expression is evaluated, what happens? In order to define the
effect result of let 𝑣 = 𝑒 in 𝑒′ ↦ ⋯, we will need to define substitution.

Definition 3 A substitution of the expression 𝑥 for the variable 𝑣 in 𝑒 is
written

[𝑥/𝑣]𝑒

and has the effect of replacing every occurrence of 𝑣 in 𝑒 with 𝑥.

It’s possible to completely define the effect
of a substitution via inference rules; e.g.,

[𝑥/𝑣]𝑣 = 𝑥

[𝑥/𝑣]𝑒􏷪 = 𝑒′􏷪 [𝑥/𝑣]𝑒􏷫 = 𝑒′􏷫
[𝑥/𝑣](𝑒􏷪 + 𝑒􏷫) = 𝑒′􏷪 + 𝑒′􏷫

and so forth. This amounts to “threading”
the substitution through all the syntactical
constructs.

We have two options for the evaluation rules for let:

• We can substitute the expression bound to 𝑣 immediately, whether or not
it is val. This leads to the rule

Let
let 𝑣 = 𝑒 in 𝑒′ ↦ [𝑒/𝑣]𝑒′

This is known as call-by-name binding semantics.

• We can first step the bound expression all the way to val, and only then



an introduction to type theory and formal semantics 14

do the substitution. This leads to the pair of rules

SearchLet
𝑒􏷠 ↦ 𝑒􏷡

let 𝑣 = 𝑒􏷠 in 𝑒 ↦ let 𝑣 = 𝑒􏷡 in 𝑒
Let

𝑒 val

let 𝑣 = 𝑒 in 𝑒′ ↦ [𝑒/𝑣]𝑒′

This is known as call-by-value semantics.

If the variable 𝑣 is evaluated multiple times, then call-by-value is more
efficient; if 𝑣 is evaluated only once, or not at all, then call-by-name can be
more efficient. (Under the rules given, both the by-name and by-val evalu-
ation schemes will always produce the same results, just with potentially-
differing numbers of steps needed to get there. Proving this is an interesting
exercise.)

You might be wondering what happens, under call-by-value, when we
have a let whose bound expression 𝑒 includes a variable from an outer let:

let 𝑥 = 𝑛[1] in (let 𝑦 = 𝑥 + 𝑛[1] in 𝑦 + 𝑦)

How can we step 𝑥 + 𝑛[1] until val? The answer is that we don’t have to!
The outer let will step until 𝑛[1] val (which is immediate), and then perform
the substitution. By the time we start stepping the inner let, 𝑥 will have
been replaced by 𝑛[1] and we can step 𝑛[1] + 𝑛[1] to val.

Proving the type-safety properties (progress and preservation) in the
presence of let involves a bit of extra work. For preservation, we must
prove a lemma stating that substitution correctly preserves types; that is

if 𝑣 ∶ 𝜏 ⊢ 𝑒′ ∶ 𝜏′ then [𝑒/𝑣]𝑒′ ∶ 𝜏′

Usually we just assume that this lemma holds, as the sort of things that tend
to “break” it (such as destructive variable assignment) don’t appear in any
of our rules.

Functions

A let can be thought of as a single-argument function where we supply
the actual argument at the same time as the function definition. Adding
functions to our language allows us to separate function definition from
application.

When we start to implement functions, we immediately have a decision
to make: do we want named functions, à la 𝑓(𝑥) = 𝑥 + 𝑥, or un-named
functions? Interestingly, the latter are easier to specify than the former.

Function abstractions

An unnamed function or 𝜆-abstraction is a value which represents a compu-
tation. The function 𝑓 above can be written in 𝜆 form as

𝜆(𝑥 ∶ Int).𝑥 + 𝑥



an introduction to type theory and formal semantics 15

The general pattern is 𝜆(𝑣 ∶ 𝜏).𝑏 where 𝑣 is the variable that stands for
the function’s eventual argument (which must be of type 𝜏), and 𝑏 is an
expression, called the body of the function, which may refer to 𝑣, and which
the function will expand into when applied. The syntax of a 𝜆 includes the
argument type, but not the return type, as that can be inferred.

Specifying the type of a function requires us to add a function type. We
write the type of functions that take 𝜏􏷠 as an input, and return a 𝜏􏷡 as

𝜏􏷠 → 𝜏􏷡

For example,

𝜆(𝑥 ∶ Str).length(𝑥) ∶ Str → Int

→ is a compound type, one built out of smaller types. Note also that the
type of the function input is part of the syntax of an abstraction.

To add functions, we need to add rules for prog, typing, and evaluation.

Because we now have compound types,
we should in theory construct a judgment
typ to specify when a type is syntactically-
valid:

TypInt
Int typ

TypStr
Str typ

Type→
𝜏􏷪 typ 𝜏􏷫 typ

𝜏􏷪 → 𝜏􏷫 typ

The prog rule for functions is similar to that for let, except that the expres-
sion 𝑒 is missing:

Prog𝜆
𝜏 typ Γ, 𝑣 prog ⊢ 𝑏 prog

Γ ⊢ 𝜆(𝑣 ∶ 𝜏).𝑏 prog

A 𝜆 is syntactically-valid if its body 𝑏 is, under the assumption that 𝑣 is (and
if the type given for 𝑣 is a syntactically-valid typ).

The typing rule for 𝜆 is as follows:

Type𝜆
Γ, 𝑥 ∶ 𝜏􏷠 ⊢ 𝑏 ∶ 𝜏􏷡

Γ ⊢ 𝜆(𝑥 ∶ 𝜏􏷠).𝑏 ∶ 𝜏􏷠 → 𝜏􏷡

This states that a 𝜆 is a function from 𝜏􏷠 to 𝜏􏷡 if assuming that its variable is
of type 𝜏􏷠 causes its body to be of type 𝜏􏷡.

The evaluation rule for 𝜆 is simple: functions are always val.

Val𝜆
𝜆(𝑥 ∶ 𝜏).𝑏 val

Function application

Functions are “created” by abstraction, by building a 𝜆. Functions are used
by application, by supplying a valid to be substituted for the variable. We
write application of 𝑓 to the expression 𝑒 as just 𝑓 𝑒.

Here are the syntax, statics, and dynamics of function application:

ProgApp
Γ ⊢ 𝑓 prog Γ ⊢ 𝑒 prog

Γ ⊢ 𝑓 𝑒 prog

TypeApp
Γ ⊢ 𝑓 ∶ 𝜏􏷠 → 𝜏􏷡 Γ ⊢ 𝑒 ∶ 𝜏􏷠

Γ ⊢ 𝑓 𝑒 ∶ 𝜏􏷡



an introduction to type theory and formal semantics 16

For the dynamics there are once again both call-by-name:

SearchApp
𝑓 ↦ 𝑓′

𝑓 𝑒 ↦ 𝑓′ 𝑒
App

(𝜆(𝑥 ∶ 𝜏).𝑏) 𝑒′ ↦ [𝑒′/𝑥]𝑏

where the argument 𝑒 is substituted into 𝑏 without being evaluated, and
call-by-value, where 𝑒 is also evaluated all the way to val before application:

SearchApp􏷪
𝑓 ↦ 𝑓′

𝑓 𝑒 ↦ 𝑓′ 𝑒
SearchApp􏷫

𝑓 val 𝑒 ↦ 𝑒′

𝑓 𝑒 ↦ 𝑓 𝑒′
App

𝑒 val

(𝜆(𝑥 ∶ 𝜏).𝑏) 𝑒 ↦ [𝑒/𝑥]𝑏

In both cases, we must step the function 𝑓 until we get a 𝜆-abstraction:
only by looking at the full 𝜆(𝑥 ∶ 𝜏).𝑏 do we know what the variable and body
of the function are.

If we have 𝜆-abstractions, we don’t actually need let as a separately-
defined construct; we can define let purely in terms of 𝜆:

let 𝑣 = 𝑒 in 𝑒′ ≡ (𝜆(𝑣 ∶ 𝜏).𝑒′) 𝑒 (if 𝑒 ∶ 𝜏)

Looking forward: other types

Function types are just the one kind of compound types we can add to our
system.

Product and sum types

A product type is like a struct in C/C++: it takes elements of two (or more)
types and wraps them up into a single value. The product type is usually
written 𝜏􏷠 × 𝜏􏷡; values of this type are written as ⟨𝑒􏷠, 𝑒􏷡⟩. The type rule for ×
is just

Type×
Γ ⊢ 𝑒􏷠 ∶ 𝜏􏷠 Γ ⊢ 𝑒􏷡 ∶ 𝜏􏷡
Γ ⊢ ⟨𝑒􏷠, 𝑒􏷡⟩ ∶ 𝜏􏷠 × 𝜏􏷡

In addition to the product constructor, we also add two extractor func-
tions, Ex􏷠 and Ex􏷡, used to extract the two components from an existing
product:

TypeEx􏷪

Γ ⊢ 𝑝 ∶ 𝜏􏷠 × 𝜏􏷡
Γ ⊢ Ex􏷠(𝑝) ∶ 𝜏􏷠

TypeEx􏷫

Γ ⊢ 𝑝 ∶ 𝜏􏷠 × 𝜏􏷡
Γ ⊢ Ex􏷡(𝑝) ∶ 𝜏􏷡

The evaluation rules for products state that a product is a val if both its
components are, and that Ex􏷠 applied to a product takes a step to its left
component, while Ex􏷡 takes a step to its right component. (Similarly to
the by-value/by-name choice for function application, here we can choose
whether Ex􏷠,􏷡 take a step immediately, or only after their component is val,
or only after both components are val.)



an introduction to type theory and formal semantics 17

The extractors have the following types

Ex􏷠 ∶ 𝜏􏷠 × 𝜏􏷡 → 𝜏􏷠 Ex􏷡 ∶ 𝜏􏷠 × 𝜏􏷡 → 𝜏􏷡

If we reverse the directions of the arrows we get

InL ∶ 𝜏􏷠 → 𝜏􏷠 + 𝜏􏷡 InR ∶ 𝜏􏷡 → 𝜏􏷠 + 𝜏􏷡

+ is known as a co-product or sum type. While the product of 𝜏􏷠 and 𝜏􏷡
includes both types, the sum of 𝜏􏷠 and 𝜏􏷡 include one or the other of the two,
but never both. The functions InL and InR are called injectors. Technically, we need to attach the full sum

type to both injectors, so that we know
what the other “half” of the sum is. So the
injectors should actually be something like
InR𝜏􏷪 ,𝜏􏷫 .

Having built up a value of a sum type, how do we use it? Because we
don’t know which “half” of the sum it might be (𝜏􏷠 or 𝜏􏷡) we must sup-
ply code to handle both. The result is case, a kind of if-else structure that
branches based on the type of value stored in the sum:

TypeCase
Γ ⊢ 𝑠 ∶ 𝜏􏷠 + 𝜏􏷡 Γ, 𝑣􏷠 ∶ 𝜏􏷠 ⊢ 𝑒􏷠 ∶ 𝜏 Γ, 𝑣􏷠 ∶ 𝜏􏷡 ⊢ 𝑒􏷡 ∶ 𝜏

Γ ⊢ case(𝑠, 𝑣􏷠.𝑒􏷠, 𝑣􏷡.𝑒􏷡) ∶ 𝜏

case takes an expression of sum type and two expressions in which the
variables 𝑣􏷠, 𝑣􏷡 are bound, either to a value of type 𝜏􏷠 or of 𝜏􏷡. In either case,
𝑒􏷠 and 𝑒􏷡 must have a final type of 𝜏.

As an example of how this might be used, suppose we wanted to write
a function mag which can operate on the sum of Int and Str, returning the
“magnitude” of its input. For integers this means the value, while for strings
this means length. The mag function looks like this:

mag ≡ 𝜆(𝑥 ∶ Int + Str).case(𝑥, 𝑣􏷠.𝑣􏷠, 𝑣􏷡.length(𝑣􏷡))

If 𝑥 was created by InL then we’ll have 𝑣􏷠 = 𝑥 and the case will evaluate
to 𝑣􏷠. If 𝑥 was created by InR then 𝑣􏷡 = 𝑥 and the case will evaluate to
length(𝑣􏷡). In either case, the result type of the branch is Int.

Polymorphic types

In our current system, there are infinitely many distinct identity functions
(functions that return their input unchanged). For Int and Str the identity
functions are

𝜆(𝑥 ∶ Int).𝑥 and 𝜆(𝑥 ∶ Str).𝑥

Notice that the bodies of body functions are identical. There are (infinitely)
many more identity functions for the various function types. E.g., here is
the identity function for Int → Str:

𝜆(𝑥 ∶ Int → Str).𝑥

Once again, the body is unchanged; only the type of 𝑥 changes.



an introduction to type theory and formal semantics 18

We would like to extend our type system so that there is only one iden-
tity function, which is polymorphic (does the same thing for different types).
To do so, we need to introduce type-level variables, variables which can
contain types. This requires adding three new constructs:

• A new kind of type, ∀𝛼.𝜏 which specifies that 𝛼 is a type variable within
the type 𝜏. This is the type-level equivalent to a 𝜆-abstraction.

• A new kind of abstraction, Λ, abstracting out the type from a body of
code.

• A new kind of application, 𝑒[𝜏] which applies the Λ abstraction 𝑒 to the
type 𝜏.

(Interestingly, just as we needed to add contexts to prog when we added
let and function, we will need to add contexts to typ now that we have
type-level functions.)

The system with 𝜆 functions and polymorphic types is known as the
polymorphically-typed lambda calculus or Girard’s System F.

A surprising “feature” of ∀ types is that once we have them, we don’t
need sum or product types to be built-in; we can build them ourselves! In
fact, it’s even possible to construct the Int type out of ∀ types. System F is
remarkably expressive in its type system, able to define a large variety of
types that would otherwise need to be specified “by hand”.

Another surprising property of polymorphic types is how a ∀ type ac-
tually gives us a significant amount of information about its elements. For
example, the type ∀𝛼.𝛼 → 𝛼 has only one element, the polymorphic identity
function:

Λ 𝑡.𝜆(𝑥 ∶ 𝑡).𝑥

No other value of the type ∀𝛼.𝛼 → 𝛼 can exist. To understand why, imagine
that ∀𝛼.𝛼 → 𝛼 describes a machine which, if you provide it with an object
of some unknown type 𝛼, will give you back another 𝛼. Crucially, the ma-
chine is not allowed to do anything that would require knowledge of the
“real” type of 𝛼. Given this restriction, the only thing the machine can do
is give you back the original 𝛼 you provided it with; it can’t build a new 𝛼,
because it has no idea how 𝛼’s are built. If something has type ∀𝛼.𝛼 → 𝛼 we
immediately know that it must be the poly. identity function, without even
looking at its definition; that’s all it can be.


	Background
	A specification for Int-Str
	Variable bindings
	Functions
	Looking forward: other types

