CS 241: Computer Organization and Assembly Language Midterm

Do not open until instructed to do so.

Do not open until histracted to do so.
Name:
"C'est en forgeant qu'on devient forgeron."
("It is by smithing that one learns to become a smith.") ~French proverb
Every problem is marked with a $ ightharpoonup$. When you see this symbol, it means that's a question which you can — and should — answer.
Fan anadan na
For grader use:
Score:

Syscalls

0	sys_read
1	sys_write
60	sys_exit

Arguments in: rdi, rsi, rdx, r10, r8, r9

Return value in: rax

Callee-saved regs.: rcx, r11

C-style functions

```
func:
   push rbp
   mov rbp, rsp
   ...

pop rbp
ret
```

Arguments in: rdi, rsi, rdx, rcx, r8, r9

Return value in: rax

Callee-saved regs.: rbx, rbp, r12-r15

Caller-saved regs.: rax, r10, r11, arguments

Memory operands

 $size \ [\textit{displacement} + \textit{base} + \texttt{m} \ ^* \ \textit{offset}]$

size byte, word, dword, etc.

displacement Constant address of array

base Array base register

m 1, 2, 4, or 8

offset Array offset register

Instructions

mov rm, rmi xchng rm, rm lea r, m xor r, r	Move Swap Load Effective Address Set r to 0
add rm, rmi sub rm, rmi mul rmi div rm imul rmi idiv rmi	Addition Subtraction Unsigned multiply (by/into rax) Unsigned divide (by/into rax, rdx) Signed multiply Signed divide
cmp rm, rmi text rm, rmi	Compare (subtract), update flags Test, update flags
jmp target jCC target loop target	Jump to target Jump if condition <i>CC</i> Decrement rcx, jump if not 0
call func ret push rmi pop rmi	Push rip, jump to func Pop rip and jump to it Push onto stack Pop from stack

r: register, m: memory operand, i: immediate

Condition codes

Meaning
Unsigned >
Unsigned \geq
${\sf Unsigned} <$
Unsigned \leq
Signed >
$Signed \geq$
Signed <
$Signed \leq$
=
\neq
If flag is set

5 points each

► Perform the following binary addition: 01110101 + 00111111 Show your work (all carries).	► Suppose a cache has a total size of 16kB and a line size of 256 bytes. How many sets, and how many lines/set does the cache have if it is:	
	Set-associative? Fully-associative?	
	Sets:	
	Lines/Set:	
► What is the decimal value of 10001111 when interpreted as two's complement-signed?		
	► Perform the addition 11100010 + 01101111, show your work, write the final sum, as well as the state of the flags after the addition is complete.	
► What is the two's complement binary value of -17?		
	CF =	
► Suppose a cache has a hit percentage of	OF =	
98%. The latency for a hit is 1ns, while the latency for a miss is 300ns. What is the average latency of a memory access?	SF =	
	ZF =	

 For each of the following condition codes, write the state of the flags it will check: a 	► What registers are used when passing floating-point arguments to a C-ABI-compatible function?
• b	
• s	
• ne	
► When executing a syscall, which of the following is used for the syscall code, the 1st argument, the 2nd argument, and the 3rd argument?	► Write assembly code to perform the division 157 / 13 using the div instruction. When your code is complete, the quotient should be in rax.
• rdx	
• rax	
• rsi	

• rdi

25 points each

► Complete the following syscall-style function so that it will print out a rectangle made of # characters. E.g., if the function's parameter in rdi is 5, it should print out
#####
Do not modify the .data section.

section .data

newline: db 10
star: db '*'
section .text
print_stars:

; Size in rdi ; Your code here... ► Complete the following function so that it returns 1 if the (qword) value in rdi is found within the array pointed to by rsi, with length (in bytes) in rdx.

```
section .text

contains:
   ; rdi = search target
   ; rsi = addr. of array
   ; rdx = length of array (bytes)
   ; Return 1 in rax if found, 0 if not
```