
Practice test for Midterm 1

September 25, 2Θ19

1 C++ review

▶ Write a function which takes a vector of int and an intm and returns true if all the values
in the vector are factors m.

bool has_factors(vector<int> facs, int m);

▶ What does the following function do:

bool f(vector<int> x) {
bool g = true;
for(int i = 0, j = x.size()-1; i < x.size(); ++i, --j)
if(x[i] != x[j])

g = false;

return g;
}

Give examples of non-empty vectors, one which will cause the function to return true, and
one which will cause it to return false.

▶ Given the following ordered array class

class ordered_array {
public:
...
int count(int x);

private:
int* data;
int current_size;
int max_size;

};

1



Implement the countmethod, which should count how many times an element x occurs in the
array.

int ordered_array::count(int x) {

2 Big-O analysis; Vectors, lists, stacks, and queues

▶ This function checks whether a vector a is a “subset” of another vector b: i.e., whether
every element of a is also an element of b.

bool subset_of(const vector<int>& a, const vector<int>& b)
{
for(int i = 0; i < a.size(); ++i) {
bool found = false;

for(int j = 0; j < b.size(); ++j)
if(b[j] == a[i]) {
found = true;
break;

}

if(!found)
return false;

}

return true;
}

Assume that a has size m and b has size n. What is the worst-case big-O complexity of this
function? What is the best-case complexity?

▶ Here is a function that checks a vector to see if it is bitonically sorted (begins ascending,
and then switches to descending at some point):

bool is_bitonic(vector<int> v)
{
// Check ascending section
int i;
for(i = 0; i < v.size() - 1; ++i)
if(v[i] > v[i+1])

break;

2



// Check descending section
for(int j = i; j < v.size() - 1; ++j)
if(v[j] < v[j + 1])

return false;

return true;
}

Analyze the cost of this function, in terms of the number of comparisons C between vector
elements (i.e., do not count i < v.size()) the number of increments I, and the number of
vector lookups L. What is the best case cost? What is the worst case cost? When (for what
inputs) do the best/worst cases occur?

▶ Given the following implementation of vector::push_back trace through the cost of the first
1Θ pushbacks, if a “cheap” pushback (i.e., a single copy) has a cost of 1, and the initial size
and capacity are Θ.

void vector::push_back(int x) {
if(size == capacity) {
// Full, reallocate to make room
int* old_data = data;
data = new int[1 + 5 * capacity / 3];

// Copy everything to the new array
for(int i = 0; i < capacity; ++i)

data[i] = old_data[i];

capacity = 1 + 5 * capacity / 3;
delete[] old_data;

}

// Add new element
data[size++] = x;

}

▶ Given the following list definition

class list {
public:

struct node {
int value;
node* next;

};

3



bool is_sorted();

private:
node* head = nullptr;

}

Implement the is_sorted method, which checks a list to see if it is sorted, and returns true if
it is.

bool list::is_sorted()
{

▶ Suppose we have a singly-linked list with methods head() and at(), and the above node type.
The following function constructs the reversed version of a list (a new list with the elements
in reverse order)

list reverse(list l) {
list out;
for(int i = 0; i < l.size(); ++i)
out.push_front(l.at(i));

return out;
}

What is the time complexity of this function? If necessary, rewrite the function so that its
time complexity is O(n).

▶ Given the following stack type (array based), write the push and pop methods:

class stack {
public:
...
void push(int x);
void pop();

private:
int* data; // Array of stack elements
int size; // Max size
int top = -1; // Index of top element

};

▶ Given the following queue type, implement the queue operations enqueue and dequeue:

4



class queue {
public:
void enqueue(int x);
void dequeue();

private:
struct elem {

int value;
elem* next;

};

elem* front = nullptr; // front of the queue
elem* back = nullptr; // back of the queue

};

(This is a list-based queue, but with the list built-in to the queue class itself.)

▶ Suppose we have an array-based queue of size 8. Draw the state of the array after the
following queue operations have been executed. For each dequeue() operation, write next to
it the element that would be removed from the queue.

enqueue(7);
enqueue(5);
enqueue(3);
dequeue();
dequeue();
enqueue(2);
enqueue(1);
dequeue();
dequeue();

▶ Given a stack-of-char class

class stack {
public:
void push(char c);
char pop();
char top();
bool empty();

...
};

Use this class to write a function which checks a string containing [] and () parentheses to
see if they are properly nested and matched.

bool proper_nesting(string s);

5


