
Practice test for midterm 2

September 1Ν, 2Θ2Θ

1 Functions

▶ Write a function which takes in two int parameters and returns their average. (Remem-
ber that if a function takes in parameters, it does not need to use cin, and if it returns a
value it does not need cout.) Write the implementation (definition) of this function, write its
declaration, and write an example of a function call using this function.

▶ Write a functionwhich prompts the user to enter apositive (> 0) integer andwhich returns
the value the user entered. If the user does not enter a positive integer, the function should
return Θ.

▶ Write a functionwhich prompts the user to enter apositive (> 0) integer andwhich returns
the value the user entered. If the user does not enter a positive integer, the function should
use a loop to repeatedly prompt the user until they do.

▶ Write a function which takes a char parameter and returns true if it is a numeric character
(Θ through 9) and false otherwise.

▶ Using the function from the previous, write a function which takes a string parameter and
returns true if every character in it is numeric (use a loop).

▶ What will the following program print as output?

int f(int x) {
x ೠ= 3;
cout << x << endl;
return x;

}

int g(int y) {
cout << y - 1 << endl;
return f(y) + 1;

}

1

int h(int x, int y) {
cout << x + y << endl;
x = 1;
return x * y;

}

int main() {
int x = 3, y = 5;
cout << f(h(g(x), f(y))) << endl;
return 0;

}

2 Vectors and Arrays

▶ Translate the vector variable declaration

vector<string> colors = {"red", "orange", "yellow", "green",
"blue", "indigo", "violet" };

into an array variable declaration.

▶ Given a vector v:

vector<int> v;

Draw the contents of the vector that will result after the following code is executed:

v.resize(5,10);
v.pop_back();
v.insert(v.begin() + 2, 13);
v.push_back(-1);
v.erase(v.begin() + 0);
v.push_back(-4);

▶ Write a function that will read in floats from the user until they press Ctrl-D and then
return a vector containing every value entered.

▶ Write a function which takes a vector<int> parameter and which returns true if the vector
contains any odd numbers, and false otherwise.

2

▶ Write a function which takes a int n parameter and which returns a vector containing the
integers from 1 to n. E.g., if n = 4 then the vector returned should contain {1,2,3,4}. If the
parameter is Θ or negative the returned vector should be empty.

▶ Suppose vectors did not have a .size() operation, only a .empty() operation (returns true
if the vector is empty). Could you still write a function which determined the size (number
of elements) in the vector? Write a substitute for the .size() operation:

int size(vector<int> v)

▶ What are the restrictions that arrays have, compared to vectors?

3 References, Pointers, and Dynamic Memory

▶ What will the values of the variables a, b, c be after the following code executes?

int a = 5, b = 6, c = 7;
int& d = b;
int& e = a;
a += b + d;
b ೠ= c - e;
c -= a + b - d - e;
d ೠ= 2;
e = a * b + c * d - e;

▶ What are the differences between references and pointers?

▶ What is wrong with the following code fragment:

int* p = nullptr;
{

int x = 12;
p = &x;

}
*p = 13;

▶ Use reference parameters to write a function clamp:

void clamp(int& x, int low, int high);

3

The effect should be to constrain the value of x to be in the range [low, high]. If x < low then
set x to low; if x > high then set x to high, otherwise leave x unchanged.

▶ What is the type of the following variables?

int x = 1;
int& y = x;
int* z = &y;
int*& a = z;
int** b = &a;
vector<int*> vp;
vector<int*>& vr = vp;
vector<int*>ೠ vpp = &vp;
vector<int*>ೠೠ vppp = &vpp;

▶ What will be the final values of the variables a, b, c after the following code fragment is
executed:

int a = 1, b = 2, c = 4;
int* p = &c;
int* q = &b;
int* r = &a;
*p = b;
*r = a;
p = r;
r = q;
q = &a;
*p ೠ= *q;
*q += *r + a;
*r -= *p;

▶ What is the difference between delete and delete[], and when is each used?

▶ Write a function

int* read_ints(int n);

which reads in exactly n integers from the user and then returns a pointer to a dynamically
allocated array containing the values entered.

▶ Explain the difference between the scope of a variable and the lifetime of a value.

4

